
Journal of Applied Mechanics and Technical Physics, Vol. 44, No. 3, pp. 425–431, 2003

NECESSARY AND SUFFICIENT FRACTURE CRITERIA

FOR A COMPOSITE WITH A BRITTLE MATRIX.

PART 2. HIGH-STRENGTH REINFORCEMENT

UDC 539.375V. M. Kornev and A. G. Demeshkin

Experimental results on fracture of composite specimens with a brittle matrix are given. A modifi-
cation is proposed for the shear model that describes deformation of a composite with failed matrix.
A three-parameter sufficient criterion of quasibrittle strength of the composite is constructed, based
on the equations of an orthotropic medium. Simple analytical expressions that relate the macrocrack
length to the loading, structural, stiffness, and strength parameters of the composite medium are ob-
tained. An approach for constructing multi-parameter criteria that take into account special features
of deformation of the materials of the composite components is discussed.

Key words: fracture criteria, composite, reinforcement, pre-fracture zone, multi-parameter cri-
teria.

Introduction. In the first part of this work [1], a pre-fracture zone of length ∆ in weakly reinforced
composites is studied on the basis of the Neuber–Novozhilov approach [2, 3]. The total stress-intensity factor (SIF)
K0

I in the Leonov–Panasyuk–Dugdale model [4, 5] can be equal to zero or positive: K0
I = 0 or K0

I > 0. The
applicability regions of these restrictions are discussed in [6]. The fracture mechanism for a composite with a brittle
matrix is as follows: a macrocrack grows due to the pre-fracture zone formed ahead of the initial-crack tip, which
is followed by failure of the fiber nearest to the crack center [7]. Only after the fibers are broken is the composite
separated into parts. To describe the fracture of composites reinforced with high-strength fibers, it is expedient
to model the composite material by an orthotropic medium and formulate fracture criteria with allowance for the
material structure [7, 8].

The pre-fracture zone adjacent to the crack tip is of primary interest. Below, the quantities that refer to
the composite or matrix (before the matrix failure) and reinforcement fibers (after the failure) are denoted by the
subscripts 1 and 2, respectively. Let σm2 = const be averaged stresses in the pre-fracture zone [1], which differ from
the “theoretical” strength of a bundle of fibers with a brittle matrix σm1. The following three cases are possible:
1) σm1 � σm2; 2) σm1 ' σm2; 3) σm1 � σm2. The first case corresponds to weak reinforcement [1] and the third
case to high-strength fiber reinforcement; in all the cases, the condition K0

I = 0 or K0
I > 0 can be satisfied.

It appears natural to use the necessary criterion of brittle strength for the matrix and the sufficient criterion
of quasibrittle strength for reinforcement (see [3]) in studying the processes of pre-fracture and ultimate fracture of
a composite. The three-parameter criterion proposed in [1] is a strain-force criterion.

1. Physicomechanical Model of a Bundle of Fibers in the Pre-Fracture Zone for the High-
Strength Fiber Reinforcement. Let the initial composite have a regular unidirectional structure [7–9] and
r1 be the distance between the fibers. To describe the composite material outside the pre-fracture zone, we use
the equations of a homogeneous orthotropic medium [8]. In the pre-fracture zone, the behavior of the partly failed
composite depends on its structure and σ–ε diagram of reinforcing fibers. The model of a bundle of fibers is the
simplest model of the composite. Each representative volume of the composite contains a fiber and brittle matrix
[7–9], the high-strength fibers can be brittle or plastic, and the limit elongation per unit length of the fiber εm2
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Fig. 1. Curves σ–ε for the specimens: 1) specimen with fibers from ÉF-32-301

glass-reinforced plastic (χ2 = 0.125); 2) specimen with fibers from ÉF-32-301
glass-reinforced plastic (χ2 = 0.05); 3) specimen from the matrix material.

is much higher than that of the matrix εm1 (εm2 � εm1). The simplified σ–ε diagrams of a bundle of fibers and
their approximations corresponding to testing of a bundle of fibers of the composite in an extremely rigid machine
are shown in [1, Fig. 1]. We consider the results of testing model composite specimens, which show that, in some
cases, the simplified description [9] of force bridges by the shear model fails to describe specific features of composite
deformation in the pre-fracture zone.

Figures 1 and 2 show the curves of extension and unloading of reinforced specimens from an epoxy matrix
with a filler. The loading and unloading paths are shown by arrows and the jump due to crack formation is shown by
dashed curves. To make the epoxy matrix brittle, sand was used as a filler. The specimens were blade-shaped and
had a cross-sectional area at the measuring base S = 60–65 mm2. The central part of the specimen was reinforced
with: 1) rod made of ÉF-32-301 unidirectional glass-reinforced plastic; 2) steel wire; 3) copper wire. Extension of the
specimens were performed in a lever-type machine. The strain was measured by clock-type indicators. The strength
and stiffness characteristics of the matrix were determined using a reference specimen whose polymerization regime
was the same as for the reinforced specimen. Figure 1 shows the deformation curves 1 and 2 for specimens with
fibers from ÉF-32-301 glass-reinforced plastic with volume fractions of fibers χ2 = 0.125 and 0.050, respectively;
curve 3 refers to deformation of the brittle matrix (χ2 is the volume fraction of reinforcing fibers in the composite
and χ1 = 1− χ2 is the volume fraction of the matrix). The points refer to the experimental data. Figure 2 shows
the deformation curves 1 and 2 for specimens reinforced with copper and steel wires, respectively (volume fractions
of fibers χ2 = 0.05). Curves 3 and 4 refer to deformation of the brittle matrix of specimens reinforced with copper
and steel wires. Curves 1 and 2 in Figs. 1 and 2 differ substantially since not only the brittle matrix failed but also a
secondary failure of the bundle of fibers occurred at the point A on the deformation curve during the deformation of
the specimens with fibers from ÉF-32-301 glass-reinforced plastic. Moreover, after unloading, crack closure occurred
in specimens with fibers from glass-reinforced plastic, whereas a considerable gap remained between the crack edges
in specimens reinforced with copper or steel wire owing to plastic properties of these materials.

Elastic modulus and strength of the tested specimens are determined with a reasonable accuracy by the
mixture rule. The average stress σ in the unidirectional composite is determined by the relation [10]

σ = σ1χ1 + σ2χ2, (1)

where σ1 and σ2 are the stresses in the matrix and fiber, respectively. For equal strains of the matrix and fiber
(before the failure), the stresses are related as the elastic moduli:

σ2/σ1 = E2/E1 (2)

(E1 and E2 are the elastic moduli of the matrix and fiber, respectively). We substitute the stiffness characteristics
of a particular element and matrix into relations (1) and (2). Given their volume fractions, we find the fracture
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Fig. 2. Curves σ–ε for the specimens: (a) curve 1 refers to the specimen reinforced with a
copper wire (χ2 = 0.05) and curve 3 refers to the specimen made of the matrix material;
(b) curve 2 refers to the specimen reinforced with a steel wire (χ2 = 0.05) and curve 4
refers to the specimen made of the matrix material.

TABLE 1

Specimen
No.

Matrix Reinforcement
Composite

Experiment Theory

E,
kg/mm2

σm,
kg/mm2

E,
kg/mm2

σm,
kg/mm2

E,
kg/mm2

σm,
kg/mm2

E,
kg/mm2

σm,
kg/mm2

1 800 1.73 4900 55 1060 2.67 1240 2.80
2 800 1.73 4900 55 1000 2.20 990 2.17
3 800 1.83 20,000 70 1670 3.53 1700 4.00
4 800 1.35 10,000 25 1300 2.25 1210 2.16

stress of the composite σm1 by finding a relation between the quantities obtained and strength characteristics of
the matrix. The failure of the composite is understood as the appearance of one or several cracks in the matrix of
the specimen. In the cracked composite specimen reinforced with high-strength fibers, the fibers play the role of a
force bridge between two parts of the composite specimen. The experimental results for specimens with only one
crack are given below.

The fracture stresses calculated by the mixture rule are compared with experimental data in Table 1. The
first and second specimens were reinforced with glass-reinforced plastic, and the third and fourth specimens were
reinforced with steel and copper wires, respectively. The volume fraction of reinforcing fibers was χ2 = 0.125 for
the first specimen and χ2 = 0.05 for the second, third, and fourth specimens. For the stresses that led to matrix
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Fig. 3. Shear model of a composite with a site of reinforcement exfoliation.

cracking, the elongations per unit length of the composite were εm1 = 22 · 10−4 for the first, second, and third
specimens and εm1 = 25 · 10−4 for the fourth specimen. The mixture rules predicts the appearance of cracks in
the matrix with reasonable accuracy (see Table 1). After the crack was formed in the matrix, a jump from one
branch of the deformation curve to another (descending portions of the curves in Figs. 1 and 2) was observed, since
a relatively “soft” lever-type testing machine was used in the experiments. From the viewpoint of estimating the
critical crack opening (CCO) of various specimens in the case where the force bridges fail, the σ–ε curves shown
in Figs. 1 and 2 are of the most interest. The experimentally obtained CCO values are peculiar to composites
with a brittle matrix. These values agree with the Budiansky–Evans–Hutchinson model [9] (see [7, 8]); however,
the experimental CCO values exceed those obtained with the use of the shear model [9]. The cases where the σ–ε
diagrams of the matrix and high-strength fiber materials have a considerable yield area are much more complex
compared to the case where the fibers are characterized by a yield area and the matrix is brittle. Some theoretical
generalizations used to formulate multi-parameter strength criteria are given below for the case where the σ–ε
diagrams of the matrix and fiber materials have a pronounced yield area.

Let us determine the applicability range of the shear model [9]. The preliminary tests were performed for
specimens with an epoxy matrix (in the solid state, epoxy is an optically active medium) and reinforcing rods
made of a material characterized by clearly defined yield properties. In the neighborhood of the crack edges, the
following three regions were determined: the region of the reinforcement-matrix exfoliation at a distance from the
crack surface that exceeded significantly the diameter of the reinforcing rods [9]; the regions with partial slipping
where dry friction occurs between the matrix and reinforcement; and the region of simultaneous deformation of the
matrix and reinforcement.

It is expedient to consider the modified shear model [9] shown in Fig. 3 (cf. Fig. 3 of [9]). Figure 3 (below)
shows the exfoliation regions AB (the shear stresses τ vanish at the matrix–reinforcement interface: τ = 0),
dry friction BC (τ = const), and simultaneous deformation CD (there is no displacement jump [v] at the matrix–
reinforcement interface: [v] = 0). Figure 3 (above) shows the stress distribution along the reinforcement. The regions
AB, BC, and CD refer to constant, linear, and exponentially decaying stresses in the reinforcement, respectively,
and the point A lies at the crack surface. The authors consider that exfoliation can be caused by yielding of the
rod material: in the region where the material yields, the rod diameter decreases, which leads to exfoliation. The
CCO values obtained with the use of the initial and modified models differ considerably, since the modified model
takes into account the parts of exfoliation and partial slippage.

We consider the cross-sectional size of the pre-fracture zone for unidirectional reinforcement. The reduced
length of “free” reinforcement that sustains the force bonds between the crack flanks (Fig. 3) is denoted by a.
Thus, the pre-fracture zone is a rectangle with sides ∆ and a. We assume that a theoretical or experimental
value of the CCO at the point x = −∆ is available (the coordinate origin is located at the right tip of the crack):
am2 = (εm2 − εm1)a. In the pre-fracture zone, constant stresses σm2 act in the interval [−∆, 0) [4, 5].
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Thus, we have the geometric parameters r1, ∆, and am2 and force parameters σm1 and σm2 used to for-
mulate the sufficient criterion of quasibrittle strength. This allows us to construct three-parameter fracture curves
corresponding to the strain-force criterion. The geometric parameter r1 characterizes the structure and is used to
formulate the discrete-integral criterion, and the length of the pre-fracture zone ∆ is determined from the restriction
imposed on the CCO magnitude. Finally, we have one strain parameter am2 and two force parameters σm1 and
σm2 (σm1 � σm2), which describe the behavior of a bundle of fibers in a composite reinforced with high-strength
fibers under failure conditions. For σm1 = σm2, the strain-force criterion involves two parameters. The advantages
of the two-criteria analysis of quasibrittle fracture are discussed in [11].

2. Sufficient Criterion of Quasibrittle Strength of a Composite with High-Strength Fibers
(σm1� σm2). The internal opening-mode crack in a composite is modeled by a bilateral cut with bonds located
in the vicinity of its tip if ∆ > 0. We assume that the restriction K0

I > 0 is satisfied for the total SIF (the case of
K0

I = 0 is considered in [6]).
The necessary discrete–integral criterion of brittle strength has the following form (∆ = 0):

1
kr1

nr1∫
0

σy(x, 0) dx 6 σm1, x > 0. (3)

The sufficient discrete–integral criterion of quasibrittle strength has the following form (∆ > 0, am2 > 0, and
l = l0 + ∆):

1
kr1

nr1∫
0

σy(x, 0) dx 6 σm1, x > 0, 2v∗ 6 am2, x 6 0. (4)

Here σy are the normal stresses on the crack continuation, which have a singular component, Oxy is a Cartesian
coordinate system whose origin coincides with the right tip of the fictitious crack, 2l0 is the length of the initial
crack, 2l is the length of the fictitious crack, n and k are numbers (n > k, where k is the number of undamaged
fibers), nr1 is the averaging interval, (n− k)/n is the coefficient that takes into account damaged reinforcement in
the averaging interval, 2v = 2v(x, 0) is the crack-opening displacement, and 2v∗(−∆, 0) = am2 is the CCO value at
which the fiber nearest to the crack center fails.

Outside the pre-fracture zone, the composite material with high-strength fibers is modeled by an orthotropic
medium. We use the analytical expressions obtained in [8] for the normal stresses on the continuation of the fictitious
crack σy(x1, 0) and its opening 2v(x1, 0):

σy(x1, 0) =
x1√
x2

1 − l2
(
σ∞ −

2σm2

π
arccos

l0
l

)
+ σm2 −

σm2

π

(
arcsin

l2 − l0x1

l(l0 − x1)
+ arcsin

l2 + l0x1

l(l0 + x1)

)
, |x1| > l; (5)

2v(x1, 0) =
4
E∗

(
σ∞ −

2σm2

π
arccos

l0
l

)√
l2 − x2

1 +
2σm2

πE∗
[(x1 − l0)F (x1, l0) + (x1 + l0)F (x1,−l0)], |x1| < l; (6)

F (x1, l0) = ln
l2 − l0x1 −

√
(l2 − l20)(l2 − x2

1)
l2 − l0x+

√
(l2 − l20)(l2 − x2

1)
, E∗ ≈ χ1E1 + χ2E2.

Here x1 = x+ l, i.e., the coordinate origin coincides with the middle points of the initial and fictitious cracks.
An analysis of the solution for stresses (5) shows that the first term in this expression contains a singular

component of the stress σy(x1, 0). The stresses σy(x1, 0) have a singular component for σ∞− (2σm2/π) arccos (l0/l)
> 0 (below, in particular, this case is considered). If the singular component vanishes [σ∞ − (2σm2/π) arccos (l0/l)
= 0], i.e., the Khristianovich hypothesis [12] is valid, the stresses σy(x1, 0) at the tip of the fictitious crack [at the
point (l, 0)] are finite: σy(0, 0) = σm2[1 + 2π−1 arcsin (l/l0)]. We estimate the contribution of various terms to the
solution for crack opening (6): for σ∞ − (2σm2/π) arccos (l0/l) > 0, the first term in (6) plays the leading role.
We confine ourselves to the simplest asymptotic representations for stresses and crack opening (the right tip of the
crack is considered, and all secondary terms are neglected):

σy(x, 0) '
√

l

2x

(
σ∞ −

2σm2

π
arccos

l0
l

)
, x > 0; (7)

2v(x, 0) ' 4
E∗

(
σ∞ −

2σm2

π
arccos

l0
l

)√
2|x|l, x < 0. (8)
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We substitute the asymptotic representation for stresses (7) and crack-opening displacement (8) into the first
and second conditions of the sufficient criterion of quasibrittle strength (4). After some obvious transformations
of the expressions for the critical parameters σ∗∞, ∆∗, and l∗ = l0 + ∆∗, we obtain the system of two nonlinear
equations

√
n

k

√
2l∗

r1

[ σ∗∞
σm2

− 2
π

arccos
(

1− ∆∗

l∗

)]
' σm1

σm2
, 4

√
2
σm2

E∗

[ σ∗∞
σm2

− 2
π

arccos
(

1− ∆∗

l∗

)]√∆∗

l∗
' am2

l∗
. (9)

System (9) is applicable only to long cracks (l/r1 � 1), since the secondary terms in relations (7) and (8) are
ignored. We confine ourselves to the quasibrittle approximation where ∆∗/l0 � 1 or ∆∗/l � 1 (classification of
fracture types by the length of the pre-fracture zone is given in [6]). For quasibrittle fracture, system (9) can be
substantially simplified:

σ∗∞
σm2

' k√
n

√
r1

2l∗
σm1

σm2
+

1
2π

E∗

σ∗∞

am2

l∗
,

√
∆∗

l∗
' 1

4
√

2
E∗

σ∗∞

am2

l∗
. (10)

The critical length of the pre-fracture zone ∆∗ is directly related to the limit deformability of high-strength
fibers am2. With an increase in this deformability, the system can sustain higher stresses σ∞ resulting from partial
failure of the matrix. In the limiting case as am2 → 0, we obtain a relation that corresponds to the necessary
criterion (3).

3. Discussion. With allowance for relations (9) or (10), we can state that the sufficient discrete–integral
criterion (4) is formulated for the problem considered as a three-parameter strain-force criterion for the parameters
am2, σm1, and σm2, which describe the strength properties of the material (σm1 6= σm2). The other two geometrical
parameters r1 and ∆, which describe the material structure and length of the pre-fracture zone, are involved only
in intermediate calculations (the quantity r1 was taken as a scale in measuring the crack length l0, l). Equations
of the fracture curves for multi-parameter criteria, constructed in Sec. 2 (see also [1, 6]) contain standard strength
characteristics of the material. The technique for constructing equations of strength curves with the use of various
criteria is the same irrespective of whether the isotropic material exhibits plasticity [6] or partial cracking [1] of the
matrix occurs.

Based on experimental data, Ando et al. [13] recommend to use multi-parameter strength criteria in pre-
dicting the failure of real ceramic materials: generally, the SIF of cracked solids, when fractured, is not a material
constant and can depend on the crack length. As a rule, the failure mode of ceramic materials is brittle or quasib-
rittle [6]. After the matrix fails, however, the formation of the pre-fracture zone strongly depends on the residual
strength of the composite, i.e., the ratio σm2/σm1 for σm2 � σm1. Even for a small length of the pre-fracture zone
∆ for σm2/σm1 > 1, the critical loads predicted by the necessary (3) and sufficient (4) criteria differ significantly
and the dependence of the SIF-type parameter on the crack length becomes pronounced in the sufficient criterion
[see (10)].

Serious difficulties arise in describing the failure of solids with V-shaped cuts [14, 15]. According to the
classical fracture mechanics, the critical SIF depends on the opening angle of the cut [15]. Probably, it makes
sense to ignore some statements of the classical fracture mechanics. It is worth noting that the classical SIF is,
undoubtedly, a convenient approximation in the case where singular components of the solutions of classical linear
equations of solid mechanics are considered.

4. Principles of Construction of Multi-Parameter Criteria. Based on the Leonov–Panasyuk–Dugdale
model [4, 5], we propose the following technique for constructing multi-parameter criteria. We consider a composite
with a plastic matrix and reinforcing (possibly, high-strength) fibers. It is assumed that the σ–ε diagram of the
composite can be approximated by the relations

σ = Eε for ε 6 ε0, σ = σm1 for ε0 6 ε < ε1, σ = σm2 for ε1 6 ε < ε2. (11)

Here σm1 6= σm2 (σm1 = const and σm2 = const), and ε1 > ε0. Approximation of the σ–ε diagram depends
on Young’s modulus E and four independent parameters σm1, σm2, ε0 − ε1, and ε0 − ε2, which characterize the
strength (σm1 and σm2) and strain (ε0 − ε1 and ε0 − ε2) properties of the composite material. For the material
type considered, the assumptions of the Leonov–Panasyuk–Dugdale model [4, 5] are formulated as follows (2l0 is
the initial length of the internal crack): two pre-fracture zones are formed ahead of the crack tips (∆1 is the length
of the pre-fracture zone of the matrix material and ∆2 is the length of the pre-fracture zone of the reinforcement
matrix material). These zones follow one another and are counted from the fictitious-crack tip: 2l = 2l0 + 2∆; the
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overall length of the pre-fracture zone in the vicinity of the fictitious-crack tips is ∆ = ∆1 + ∆2. We assume that
the restriction KI > 0 is satisfied for the total SIF at the tip of the fictitious crack.

The sufficient discrete-integral criterion can be formulated in the following form (∆ = ∆1 +∆2 > 0, am1 > 0,
am2 > 0, and l = l0 + ∆):

1
kr1

nr1∫
0

σy(x, 0) dx 6 σm1, x > 0,

2v∗ 6 am1, −∆1 6 x 6 0, 2v∗ 6 am2, −∆1 −∆2 6 x 6 −∆1.
(12)

Here 2v∗(−∆1, 0) = am1 is the CCO for which the matrix plasticity is exhausted, 2v∗(−∆1 −∆2, 0) = am2 is the
CCO for which the fiber nearest to the crack center fails, and the remaining notation is the same as in Sec. 2. The
crack-opening displacements am1 and am2 are determined by the quantities ε0−ε1 and ε0−ε2 from (11) and models
that describe the cross-sectional size of the corresponding pre-fracture zones.

The limiting passage from criterion (12) to criterion (4) for ε0 = ε1 (am1 = 0) is obvious. Criterion (12) pro-
posed above is a natural generalization of criterion (4). Since the two-parameter criterion has already been con-
structed for concrete [16], the four-parameter criterion proposed can possibly be used to describe the failure of
ferroconcrete in the case where steel reinforcement works beyond the elastic limit.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 01-01-00873
and 00-15-96180).
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